OKLAHOMA STATE UNIVERSITY

SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING

ECEN 5713 Linear Systems Fall 2003 Midterm Exam #2

PH.D. Students- DO ALL FIVE PROBLEMS

MS Students- Choose FOUR out of five problems: Indicate below which four are chosen1).2).3).4).

Name : _____

Student ID:

E-Mail Address:_____

<u>Problem 1</u>: Let $F = \{0, 1, 2, 3, 4\}$. Define the rules of addition and multiplication such that *F* is a field.

Problem 2: For

$$A = \begin{bmatrix} 3 & 2 & 1 & 0 \\ 3 & 2 & 1 & 0 \\ 3 & 2 & 1 & 0 \\ 3 & 2 & 1 & 0 \end{bmatrix}$$

Determine the rank and nullity of the above linear operator, A? And find a basis for the range space and the null space of the linear operator, A, respectively?

Problem 3:

Assume $\alpha = \begin{bmatrix} a_1 & a_2 & \cdots & a_n \end{bmatrix}^T$ and $\beta = \begin{bmatrix} b_1 & b_2 & \cdots & b_n \end{bmatrix}^T$ are linearly independent, prove that $\alpha' = \begin{bmatrix} a_1 & a_2 & \cdots & a_n & a_{n+1} \end{bmatrix}^T$ and $\beta' = \begin{bmatrix} b_1 & b_2 & \cdots & b_n & b_{n+1} \end{bmatrix}^T$ are linearly independent as well.

Problem 4:

Consider the subspace of \Re^4 consisting of all 4×1 column vector $x = \begin{bmatrix} x_1 & x_2 & x_3 & x_4 \end{bmatrix}^T$ with constraints $x_1 + x_2 + x_3 = 0$ and $3x_1 + 3x_2 + 3x_3 = 0$. Extend the following set (with only one element) to form a basis for THE subspace:

$$\begin{bmatrix} 1\\1\\-2\\0\end{bmatrix}$$

Problem 5:

Let *A* be an $m \times n$ matrix. Show that the set of all $1 \times m$ vectors *y* satisfying yA = 0 forms a vector space, called the left null space of *A*, with dimension $m - \rho(A)$, where $\rho(A)$ is the rank of A.