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Problem 1: 
Let { }F = 0 1 2 3 4, , , , . Define the rules of addition and multiplication such that F is a field. 
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Problem 2: 
For  
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Determine the rank and nullity of the above linear operator, A ? And find a basis for the range 
space and the null space of the linear operator, A, respectively ? 
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Problem 3: 
Assume [ ]Tnaaa L21=α  and [ ]Tnbbb L21=β  are linearly independent, prove that 

[ ]Tnn aaaa 121' +=α L  and [ ]Tnn bbbb 121' +=β L  are linearly independent as well.  
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Problem 4: 
Consider the subspace of 4ℜ consisting of all 14× column vector [ ]Txxxxx 4321= with 
constraints 0321 =++ xxx  and 0333 321 =++ xxx . Extend the following set (with only one 
element) to form a basis for THE subspace: 
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Problem 5: 
Let A be an nm×  matrix. Show that the set of all m×1  vectors y satisfying 0=yA  forms a 
vector space, called the left null space of A, with dimension )(Am ρ− , where )(Aρ  is the rank of 
A. 


