OK L A H O M A S TATE UNIVERSITY sChOOL OF ELECTRICAL AND COMPUTER ENGINEERING

ECEN 5713 Linear Systems Fall 2003 Midterm Exam \#2

PH.D. Students- DO ALL FIVE PROBLEMS

MS Students-Choose FOUR out of five problems: Indicate below which four are chosen
1). $\quad 2$).
3).
4).

Name : \qquad

Student ID: \qquad

E-Mail Address: \qquad

Problem 1:

Let $F=\{0,1,2,3,4\}$. Define the rules of addition and multiplication such that F is a field.

Problem 2:

For

$$
A=\left[\begin{array}{llll}
3 & 2 & 1 & 0 \\
3 & 2 & 1 & 0 \\
3 & 2 & 1 & 0
\end{array}\right]
$$

Determine the rank and nullity of the above linear operator, A ? And find a basis for the range space and the null space of the linear operator, A, respectively?

Problem 3:

Assume $\alpha=\left[\begin{array}{llll}a_{1} & a_{2} & \cdots & a_{n}\end{array}\right]^{T}$ and $\beta=\left[\begin{array}{llll}b_{1} & b_{2} & \cdots & b_{n}\end{array}\right]^{T}$ are linearly independent, prove that $\alpha^{\prime}=\left[\begin{array}{lllll}a_{1} & a_{2} & \cdots & a_{n} & a_{n+1}\end{array}\right]^{T}$ and $\beta^{\prime}=\left[\begin{array}{lllll}b_{1} & b_{2} & \cdots & b_{n} & b_{n+1}\end{array}\right]^{T}$ are linearly independent as well.

Problem 4:

Consider the subspace of \mathfrak{R}^{4} consisting of all 4×1 column vector $x=\left[\begin{array}{llll}x_{1} & x_{2} & x_{3} & x_{4}\end{array}\right]^{T}$ with constraints $x_{1}+x_{2}+x_{3}=0$ and $3 x_{1}+3 x_{2}+3 x_{3}=0$. Extend the following set (with only one element) to form a basis for THE subspace:
$\left[\begin{array}{c}1 \\ 1 \\ -2 \\ 0\end{array}\right]$.

Problem 5:

Let A be an $m \times n$ matrix. Show that the set of all $1 \times m$ vectors y satisfying $y A=0$ forms a vector space, called the left null space of A, with dimension $m-\rho(A)$, where $\rho(A)$ is the rank of A.

